Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 101 - 125 of 171 results
Background
101.

Photo-dynamics and thermal behavior of the BLUF domain containing adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain.

blue BLUF domains Background
Chem Phys, 20 Dec 2012 DOI: 10.1016/j.chemphys.2012.12.015 Link to full text
Abstract: The absorption and emission spectroscopic behavior of the photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain was studied in the dark, during blue-light exposure and after blue-light exposure. The typical BLUF domain (BLUF = Blue Light sensor Using Flavin) flavin cofactor absorption and fluorescence photo-cycle dynamics was observed. For fresh samples a reversible concentration dependent protein oligomerization occurred showing up in free flavin binding and protein color center formation with increasing protein concentration. Thermal and temporal irreversible protein unfolding with loss of BLUF domain activity was investigated. Temperature dependent protein melting times and the apparent protein melting temperature were determined. The photodynamic behavior of the NgPAC2 is compared with the behavior of the previously investigated photo-activated cyclase NgPAC1 (nPAC) from the same N. gruberi NEG-M strain.
102.

Light detection and signal transduction in the BLUF photoreceptors.

blue BLUF domains Review Background
Plant Cell Physiol, 14 Dec 2012 DOI: 10.1093/pcp/pcs173 Link to full text
Abstract: BLUF (sensor of blue light using FAD) domain-containing proteins are one of three types of flavin-binding, blue-light-sensing proteins found in many bacteria and some algae. The other types of blue-light-sensing proteins are the cryptochromes and the light, oxygen, voltage (LOV) domain-containing proteins. BLUF proteins control a wide variety of light-dependent physiological activities including photosystem synthesis, biofilm formation and the photoavoidance response. The BLUF domain photochemical reaction is unique in that only small chromophore structural changes are involved in the light activation process, because the rigid flavin moiety is involved, rather than an isomerizable chromophore (e.g. phytochromobilin in phytochromes and retinal in rhodopsins). Recent spectroscopic, biochemical and structural studies have begun to elucidate how BLUF domains transmit the light-induced signal and identify related, subsequent changes in the domain structures. Herein, I review progress made to date concerning the physiological functions and the phototransduction mechanism of BLUF proteins.
103.

Identification of natural and artificial DNA substrates for light-activated LOV-HTH transcription factor EL222.

blue LOV domains Background
Biochemistry, 10 Dec 2012 DOI: 10.1021/bi301306t Link to full text
Abstract: Light-oxygen-voltage (LOV) domains serve as the photosensory modules for a wide range of plant and bacterial proteins, conferring blue light-dependent regulation to effector activities as diverse as enzymes and DNA binding. LOV domains can also be engineered into a variety of exogenous targets, allowing similar regulation for new protein-based reagents. Common to these proteins is the ability for LOV domains to reversibly form a photochemical adduct between an internal flavin chromophore and the surrounding protein, using this to trigger conformational changes that affect output activity. Using the Erythrobacter litoralis protein EL222 model system that links LOV regulation to a helix-turn-helix (HTH) DNA binding domain, we demonstrated that the LOV domain binds and inhibits the HTH domain in the dark, releasing these interactions upon illumination [Nash, A. I., et al. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 9449-9454]. Here we combine genomic and in vitro selection approaches to identify optimal DNA binding sites for EL222. Within the bacterial host, we observe binding at several genomic sites using a 12 bp sequence consensus that is also found by in vitro selection methods. Sequence-specific alterations in the DNA consensus reduce EL222 binding affinity in a manner consistent with the expected binding mode, a protein dimer binding to two repeats. Finally, we demonstrate the light-dependent activation of transcription of two genes adjacent to an EL222 binding site. Taken together, these results shed light on the native function of EL222 and provide useful reagents for further basic and applications research of this versatile protein.
104.

Red/green cyanobacteriochromes: sensors of color and power.

violet Cyanobacteriochromes Background
Biochemistry, 21 Nov 2012 DOI: 10.1021/bi3013565 Link to full text
Abstract: Phytochromes are red/far-red photoreceptors using cysteine-linked linear tetrapyrrole (bilin) chromophores to regulate biological responses to light. Light absorption triggers photoisomerization of the bilin between the 15Z and 15E photostates. The related cyanobacteriochromes (CBCRs) extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. Several subfamilies of CBCRs have been described. Representatives of one such subfamily, including AnPixJ and NpR6012g4, exhibit red/green photocycles in which the 15Z photostate is red-absorbing like that of phytochrome but the 15E photoproduct is instead green-absorbing. Using recombinant expression of individual CBCR domains in Escherichia coli, we fully survey the red/green subfamily from the cyanobacterium Nostoc punctiforme. In addition to 14 new photoswitching CBCRs, one apparently photochemically inactive protein exhibiting intense red fluorescence was observed. We describe a novel orange/green photocycle in one of these CBCRs, NpF2164g7. Dark reversion varied in this panel of CBCRs; some examples were stable as the 15E photoproduct for days, while others reverted to the 15Z dark state in minutes or even seconds. In the case of NpF2164g7, dark reversion was so rapid that reverse photoconversion of the green-absorbing photoproduct was not significant in restoring the dark state, resulting in a broadband response to light. Our results demonstrate that red/green CBCRs can thus act as sensors for the color or intensity of the ambient light environment.
105.

Light-inducible system for tunable protein expression in Neurospora crassa.

blue LOV domains Background
G3 (Bethesda), 1 Oct 2012 DOI: 10.1534/g3.112.003939 Link to full text
Abstract: Filamentous fungi are important model systems for understanding eukaryotic cellular processes, including the study of protein expression. A salient feature of fungi is the ability of the protein-processing machinery to perform all of the extensive posttranslational modifications needed in the complex world of eukaryotic organisms, making them great hosts for production of eukaryotic proteins. In the model organism Neurospora crassa, several regulatable promoters have been used for heterologous gene expression but all suffer from leaky expression absent stimuli or an inability to induce protein expression at levels greater than those seen in vivo. To increase and better control in vivo protein expression in Neurospora, we have harnessed the light-induced vvd promoter. vvd promoter-driven mRNA expression is dependent upon light, shows a graded response, and is rapidly shut off when returned to the dark. The vvd promoter is a highly tunable and regulatable system, which could be a useful instrument for those interested in efficient and controllable gene expression.
106.

Photoinduced damage to cellular DNA: direct and photosensitized reactions.

UV UV receptors Review Background
Photochem Photobiol, 30 Aug 2012 DOI: 10.1111/j.1751-1097.2012.01200.x Link to full text
Abstract: The survey focuses on recent aspects of photochemical reactions to cellular DNA that are implicated through the predominant formation of mostly bipyrimidine photoproducts in deleterious effects of human exposure to sunlight. Recent developments in analytical methods have allowed accurate and quantitative measurements of the main DNA photoproducts in cells and human skin. Highly mutagenic CC and CT bipyrimidine photoproducts, including cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are generated in low yields with respect to TT and TC photoproducts. Another striking finding deals with the formation of Dewar valence isomers, the third class of bipyrimidine photoproducts that is accounted for by UVA-mediated isomerization of initially UVB generated 6-4PPs. Cyclobutadithymine (T<>T) has been unambiguously shown to be involved in the genotoxicity of UVA radiation. Thus, T<>T is formed in UVA-irradiated cellular DNA according to a direct excitation mechanism with a higher efficiency than oxidatively generated DNA damage that arises mostly through the Type II photosensitization mechanism. C<>C and C<>T are repaired at rates intermediate between those of T<>T and 6-4TT. Evidence has been also provided for the occurrence of photosensitized reactions mediated by exogenous agents that act either in an independent way or through photodynamic effects.
107.

Structure of a bacteriophytochrome and light-stimulated protomer swapping with a gene repressor.

near-infrared Phytochromes Background
Structure, 12 Jul 2012 DOI: 10.1016/j.str.2012.06.002 Link to full text
Abstract: Phytochromes are photoreceptors in phototropic organisms that respond to light conditions by changing interactions between a response regulator and DNA. Bacterial phytochromes (BphPs) comprise an input photosensory core domain (PCD) and an output transducing domain (OTD). We report the structure of a BphP containing both PCD and the majority of its OTD, and demonstrate interaction with its cognate repressor. The OTD of RpBphP1, from Rhodopseudomonas palustris, is composed of a PAS/PAC domain and, to our knowledge, a hitherto unrecognized two-helix output sensor (HOS) domain. Unlike canonical BphPs, it does not transmit phosphorelay signals but forms a complex with the transcriptional repressor RpPpsR2 on photoconversion with far-red light. We show that HOS is essential for complex formation and that the anti-parallel dimer geometry is crucial in achieving HOS domain activation and protomer swapping under the control of light. These results provide insights into the steps taken by a two-component signaling system.
108.

Time-resolved tracking of interprotein signal transduction: Synechocystis PixD-PixE complex as a sensor of light intensity.

blue BLUF domains Background
J Am Chem Soc, 11 May 2012 DOI: 10.1021/ja301540r Link to full text
Abstract: PixD (Slr1694) is a blue light receptor that contains a BLUF (blue light sensors using a flavin chromophore) domain. A protein-protein interaction between PixD and a response regulator PixE (Slr1693) is essential to achieve light signal transduction for phototaxis of the species. Although the initial photochemical reaction of PixD, the red shift of the flavin absorption spectrum, has been investigated, the subsequent reaction dynamics remain largely unresolved. Only the disassembly of the PixD(10)-PixE(5) dark complex has been characterized by static size exclusion chromatography. In this report, interprotein reaction dynamics were examined using time-resolved transient grating spectroscopy. The dissociation process was clearly observed as the light-induced diffusion coefficient change in the time domain, and the kinetics was determined. More strikingly, disassembly was found to take place only after photoactivation of two PixD subunits in the complex. This result suggests that the biological response of PixD does not follow a linear correlation with the light intensity but appears to be light-intensity-dependent.
109.

Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop.

red Phytochromes Background
Mol Plant, 5 Apr 2012 DOI: 10.1093/mp/sss031 Link to full text
Abstract: The reversibly red (R)/far-red (FR)-light-responsive phytochrome (phy) photosensory system initiates both the deetiolation process in dark-germinated seedlings upon first exposure to light, and the shade-avoidance process in fully deetiolated seedlings upon exposure to vegetational shade. The intracellular signaling pathway from the light-activated photoreceptor conformer (Pfr) to the transcriptional network that drives these responses involves direct, physical interaction of Pfr with a small subfamily of bHLH transcription factors, termed Phy-Interacting Factors (PIFs), which induces rapid PIF proteolytic degradation. In addition, there is evidence of further complexity in light-grown seedlings, whereby phyB-PIF interaction reciprocally induces phyB degradation, in a mutually-negative, feedback-loop configuration. Here, to assess the relative contributions of these antagonistic activities to the net phenotypic readout in light-grown seedlings, we have examined the magnitude of the light- and simulated-shade-induced responses of a pentuple phyBpif1pif3pif4pif5 (phyBpifq) mutant and various multiple pif-mutant combinations. The data (1) reaffirm that phyB is the predominant, if not exclusive, photoreceptor imposing the inhibition of hypocotyl elongation in deetiolating seedlings in response to prolonged continuous R irradiation and (2) show that the PIF quartet (PIF1, PIF3, PIF4, and PIF5) retain and exert a dual capacity to modulate hypocotyl elongation under these conditions, by concomitantly promoting cell elongation through intrinsic transcriptional-regulatory activity, and reducing phyB-inhibitory capacity through feedback-loop-induced phyB degradation. In shade-exposed seedlings, immunoblot analysis shows that the shade-imposed reduction in Pfr levels induces increases in the abundance of PIF3, and mutant analysis indicates that PIF3 acts, in conjunction with PIF4 and PIF5, to promote the known shade-induced acceleration of hypocotyl elongation. Conversely, although the quadruple pifq mutant displays clearly reduced hypocotyl elongation compared to wild-type in response to prolonged shade, immunoblot analysis detects no elevation in phyB levels in the mutant seedlings compared to the wild-type during the majority of the shade-induced growth period, and phyB levels are not robustly correlated with the growth phenotype across the pif-mutant combinations compared. These results suggest that PIF feedback modulation of phyB abundance does not play a dominant role in modulating the magnitude of the PIF-promoted, shade-responsive phenotype under these conditions. In seedlings grown under diurnal light-dark cycles, the data show that FR-pulse-induced removal of Pfr at the beginning of the dark period (End-of-Day-FR (EOD-FR) treatment) results in longer hypocotyls relative to no EOD-FR treatment and that this effect is attenuated in the pif-mutant combinations tested. This result similarly indicates that the PIF quartet members are capable of intrinsically promoting hypocotyl cell elongation in light-grown plants, independently of the effects of PIF feedback modulation of photoactivated-phyB abundance.
110.

Crystal structures of Aureochrome1 LOV suggest new design strategies for optogenetics.

blue LOV domains Background
Structure, 3 Apr 2012 DOI: 10.1016/j.str.2012.02.016 Link to full text
Abstract: Aureochrome1, a signaling photoreceptor from a eukaryotic photosynthetic stramenopile, confers blue-light-regulated DNA binding on the organism. Its topology, in which a C-terminal LOV sensor domain is linked to an N-terminal DNA-binding bZIP effector domain, contrasts with the reverse sensor-effector topology in most other known LOV-photoreceptors. How, then, is signal transmitted in Aureochrome1? The dark- and light-state crystal structures of Aureochrome1 LOV domain (AuLOV) show that its helical N- and C-terminal flanking regions are packed against the external surface of the core β sheet, opposite to the FMN chromophore on the internal surface. Light-induced conformational changes occur in the quaternary structure of the AuLOV dimer and in Phe298 of the Hβ strand in the core. The properties of AuLOV extend the applicability of LOV domains as versatile design modules that permit fusion to effector domains via either the N- or C-termini to confer blue-light sensitivity.
111.

The amino-terminal helix modulates light-activated conformational changes in AsLOV2.

blue LOV domains Background
J Mol Biol, 7 Mar 2012 DOI: 10.1016/j.jmb.2012.02.037 Link to full text
Abstract: The mechanism of light-triggered conformational change and signaling in light-oxygen-voltage (LOV) domains remains elusive in spite of extensive investigation and their use in optogenetic studies. The LOV2 domain of Avenasativa phototropin 1 (AsLOV2), a member of the Per-Arnt-Sim (PAS) family, contains a flavin mononucleotide chromophore that forms a covalent bond with a cysteine upon illumination. This event leads to the release of the carboxy-terminal Jα helix, the biological output signal. Using mutational analysis, circular dichroism, and NMR, we find that the largely ignored amino-terminal helix is a control element in AsLOV2's light-activated conformational change. We further identify a direct amino-to-carboxy-terminal "input-output" signaling pathway. These findings provide a framework to rationalize the LOV domain architecture, as well as the signaling mechanisms in both isolated and tandem arrangements of PAS domains. This knowledge can be applied in engineering LOV-based photoswitches, opening up new design strategies and improving existing ones.
112.

Structural basis of ultraviolet-B perception by UVR8.

UV UV receptors Background
Nature, 29 Feb 2012 DOI: 10.1038/nature10931 Link to full text
Abstract: The Arabidopsis thaliana protein UVR8 is a photoreceptor for ultraviolet-B. Upon ultraviolet-B irradiation, UVR8 undergoes an immediate switch from homodimer to monomer, which triggers a signalling pathway for ultraviolet protection. The mechanism by which UVR8 senses ultraviolet-B remains largely unknown. Here we report the crystal structure of UVR8 at 1.8 Å resolution, revealing a symmetric homodimer of seven-bladed β-propeller that is devoid of any external cofactor as the chromophore. Arginine residues that stabilize the homodimeric interface, principally Arg 286 and Arg 338, make elaborate intramolecular cation-π interactions with surrounding tryptophan amino acids. Two of these tryptophans, Trp 285 and Trp 233, collectively serve as the ultraviolet-B chromophore. Our structural and biochemical analyses identify the molecular mechanism for UVR8-mediated ultraviolet-B perception, in which ultraviolet-B radiation results in destabilization of the intramolecular cation-π interactions, causing disruption of the critical intermolecular hydrogen bonds mediated by Arg 286 and Arg 338 and subsequent dissociation of the UVR8 homodimer.
113.

Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges.

UV UV receptors Background
Science, 9 Feb 2012 DOI: 10.1126/science.1218091 Link to full text
Abstract: The recently identified plant photoreceptor UVR8 (UV RESISTANCE LOCUS 8) triggers regulatory changes in gene expression in response to ultraviolet-B (UV-B) light through an unknown mechanism. Here, crystallographic and solution structures of the UVR8 homodimer, together with mutagenesis and far-UV circular dichroism spectroscopy, reveal its mechanisms for UV-B perception and signal transduction. β-propeller subunits form a remarkable, tryptophan-dominated, dimer interface stitched together by a complex salt-bridge network. Salt-bridging arginines flank the excitonically coupled cross-dimer tryptophan "pyramid" responsible for UV-B sensing. Photoreception reversibly disrupts salt bridges, triggering dimer dissociation and signal initiation. Mutation of a single tryptophan to phenylalanine retunes the photoreceptor to detect UV-C wavelengths. Our analyses establish how UVR8 functions as a photoreceptor without a prosthetic chromophore to promote plant development and survival in sunlight.
114.

Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily.

violet Cyanobacteriochromes Background
Biochemistry, 8 Feb 2012 DOI: 10.1021/bi201783j Link to full text
Abstract: Phytochromes are red/far-red photosensory proteins that regulate adaptive responses to light via photoswitching of cysteine-linked linear tetrapyrrole (bilin) chromophores. The related cyanobacteriochromes (CBCRs) extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. CBCRs and phytochromes share a conserved Cys residue required for bilin attachment. In one CBCR subfamily, often associated with a blue/green photocycle, a second Cys lies within a conserved Asp-Xaa-Cys-Phe (DXCF) motif and is essential for the blue/green photocycle. Such DXCF CBCRs use isomerization of the phycocyanobilin (PCB) chromophore into the related phycoviolobilin (PVB) to shorten the conjugated system for sensing green light. We here use recombinant expression of individual CBCR domains in Escherichia coli to survey the DXCF subfamily from the cyanobacterium Nostoc punctiforme. We describe ten new photoreceptors with well-resolved photocycles and three additional photoproteins with overlapping dark-adapted and photoproduct states. We show that the ability of this subfamily to form PVB or retain PCB provides a powerful mechanism for tuning the photoproduct absorbance, with blue-absorbing dark states leading to a broad range of photoproducts absorbing teal, green, yellow, or orange light. Moreover, we use a novel green/teal CBCR that lacks the blue-absorbing dark state to demonstrate that PVB formation requires the DXCF Cys residue. Our results demonstrate that this subfamily exhibits much more spectral diversity than had been previously appreciated.
115.

The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors.

blue BLUF domains LOV domains Review Background
Annu Rev Plant Biol, 15 Nov 2011 DOI: 10.1146/annurev-arplant-042811-105538 Link to full text
Abstract: Photoreceptor flavoproteins of the LOV, BLUF, and cryptochrome families are ubiquitous among the three domains of life and are configured as UVA/blue-light systems not only in plants-their original arena-but also in prokaryotes and microscopic algae. Here, we review these proteins' structure and function, their biological roles, and their evolution and impact in the living world, and underline their growing application in biotechnologies. We present novel developments such as the interplay of light and redox stimuli, emerging enzymatic and biological functions, lessons on evolution from picoalgae, metagenomics analysis, and optogenetics applications.
116.

Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores: photochemistry and dark reversion kinetics.

violet Cyanobacteriochromes Background
FEBS J, 11 Nov 2011 DOI: 10.1111/j.1742-4658.2011.08397.x Link to full text
Abstract: Cyanobacteriochromes are phytochrome homologues in cyanobacteria that act as sensory photoreceptors. We compare two cyanobacteriochromes, RGS (coded by slr1393) from Synechocystis sp. PCC 6803 and AphC (coded by all2699) from Nostoc sp. PCC 7120. Both contain three GAF (cGMP phosphodiesterase, adenylyl cyclase and FhlA protein) domains (GAF1, GAF2 and GAF3). The respective full-length, truncated and cysteine point-mutated genes were expressed in Escherichia coli together with genes for chromophore biosynthesis. The resulting chromoproteins were analyzed by UV-visible absorption, fluorescence and circular dichroism spectroscopy as well as by mass spectrometry. RGS shows a red-green photochromism (λ(max) = 650 and 535 nm) that is assigned to the reversible 15Z/E isomerization of a single phycocyanobilin-chromophore (PCB) binding to Cys528 of GAF3. Of the three GAF domains, only GAF3 binds a chromophore and the binding is autocatalytic. RGS autophosphorylates in vitro; this reaction is photoregulated: the 535 nm state containing E-PCB was more active than the 650 nm state containing Z-PCB. AphC from Nostoc could be chromophorylated at two GAF domains, namely GAF1 and GAF3. PCB-GAF1 is photochromic, with the proposed 15E state (λ(max) = 685 nm) reverting slowly thermally to the thermostable 15Z state (λ(max)  = 635 nm). PCB-GAF3 showed a novel red-orange photochromism; the unstable state (putative 15E, λ(max) = 595 nm) reverts very rapidly (τ ~ 20 s) back to the thermostable Z state (λ(max) = 645 nm). The photochemistry of doubly chromophorylated AphC is accordingly complex, as is the autophosphorylation: E-GAF1/E-GAF3 shows the highest rate of autophosphorylation activity, while E-GAF1/Z-GAF3 has intermediate activity, and Z-GAF1/Z-GAF3 is the least active state.
117.

The action mechanisms of plant cryptochromes.

blue Cryptochromes Review Background
Trends Plant Sci, 7 Oct 2011 DOI: 10.1016/j.tplants.2011.09.002 Link to full text
Abstract: Cryptochromes (CRY) are blue-light receptors that mediate various light responses in plants. The photoexcited CRY molecules undergo several biophysical and biochemical changes, including electron transfer, phosphorylation and ubiquitination, resulting in conformational changes to propagate light signals. Two modes of CRY signal transduction have recently been discovered: the cryptochrome-interacting basic-helix-loop-helix 1 (CIB)-dependent CRY2 regulation of transcription; and the SUPPRESSOR OF PHYA1/CONSTITUTIVELY PHOTOMORPHOGENIC1 (SPA1/COP1)-dependent cryptochrome regulation of proteolysis. Both CRY signaling pathways rely on blue light-dependent interactions between the CRY photoreceptor and its signaling proteins to modulate gene expression changes in response to blue light, leading to altered developmental programs in plants.
118.

Variations in protein-flavin hydrogen bonding in a light, oxygen, voltage domain produce non-Arrhenius kinetics of adduct decay.

blue LOV domains Background
Biochemistry, 21 Sep 2011 DOI: 10.1021/bi200976a Link to full text
Abstract: Light, oxygen, voltage (LOV) domains utilize a conserved blue light-dependent mechanism to control a diverse array of effector domains in biological and engineered proteins. Variations in the kinetics and efficiency of LOV photochemistry fine-tune various aspects of the photic response. Characterization of the kinetics of a key aspect of this photochemical mechanism in EL222, a blue light responsive DNA binding protein from Erythrobacter litoralis HTCC2594, reveals unique non-Arrhenius behavior in the rate of dark-state cleavage of the photochemically generated adduct. Sequence analysis and mutagenesis studies establish that this effect stems from a Gln to Ala mutation unique to EL222 and homologous proteins from marine bacteria. Kinetic and spectroscopic analyses reveal that hydrogen bonding interactions between the FMN N1, O2, and ribityl hydroxyls and the surrounding protein regulate photocycle kinetics and stabilize the LOV active site from temperature-induced alteration in local structure. Substitution of residues interacting with the N1-O2 locus modulates adduct stability, structural flexibility, and sequestration of the active site from bulk solvent without perturbation of light-activated DNA binding. Together, these variants link non-Arrhenius behavior to specific alteration of an H-bonding network, while affording tunability of photocycle kinetics.
119.

Phytochrome signaling mechanisms.

red Phytochromes Review Background
Arabidopsis Book, 29 Aug 2011 DOI: 10.1199/tab.0148 Link to full text
Abstract: Phytochromes are red (R)/far-red (FR) light photoreceptors that play fundamental roles in photoperception of the light environment and the subsequent adaptation of plant growth and development. There are five distinct phytochromes in Arabidopsis thaliana, designated phytochrome A (phyA) to phyE. phyA is light-labile and is the primary photoreceptor responsible for mediating photomorphogenic responses in FR light, whereas phyB-phyE are light stable, and phyB is the predominant phytochrome regulating de-etiolation responses in R light. Phytochromes are synthesized in the cytosol in their inactive Pr form. Upon light irradiation, phytochromes are converted to the biologically active Pfr form, and translocate into the nucleus. phyB can enter the nucleus by itself in response to R light, whereas phyA nuclear import depends on two small plant-specific proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). Phytochromes may function as light-regulated serine/threonine kinases, and can phosphorylate several substrates, including themselves in vitro. Phytochromes are phosphoproteins, and can be dephosphorylated by a few protein phosphatases. Photoactivated phytochromes rapidly change the expression of light-responsive genes by repressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), an E3 ubiquitin ligase targeting several photomorphogenesis-promoting transcription factors for degradation, and by inducing rapid phosphorylation and degradation of Phytochrome-Interacting Factors (PIFs), a group of bHLH transcription factors repressing photomorphogenesis. Phytochromes are targeted by COP1 for degradation via the ubiquitin/26S proteasome pathway.
120.

Function, structure and mechanism of bacterial photosensory LOV proteins.

blue LOV domains Review Background
Nat Rev Microbiol, 8 Aug 2011 DOI: 10.1038/nrmicro2622 Link to full text
Abstract: LOV (light, oxygen or voltage) domains are protein photosensors that are conserved in bacteria, archaea, plants and fungi, and detect blue light via a flavin cofactor. LOV domains are present in both chemotrophic and phototrophic bacterial species, in which they are found amino-terminally of signalling and regulatory domains such as sensor histidine kinases, diguanylate cyclases-phosphodiesterases, DNA-binding domains and regulators of RNA polymerase σ-factors. In this Review, we describe the current state of knowledge about the function of bacterial LOV proteins, the structural basis of LOV domain-mediated signal transduction, and the use of LOV domains as genetically encoded photoswitches in synthetic biology.
121.

Structure of a light-activated LOV protein dimer that regulates transcription.

blue LOV domains Background
Sci Signal, 2 Aug 2011 DOI: 10.1126/scisignal.2001945 Link to full text
Abstract: Light, oxygen, or voltage (LOV) protein domains are present in many signaling proteins in bacteria, archaea, protists, plants, and fungi. The LOV protein VIVID (VVD) of the filamentous fungus Neurospora crassa enables the organism to adapt to constant or increasing amounts of light and facilitates proper entrainment of circadian rhythms. Here, we determined the crystal structure of the fully light-adapted VVD dimer and reveal the mechanism by which light-driven conformational change alters the oligomeric state of the protein. Light-induced formation of a cysteinyl-flavin adduct generated a new hydrogen bond network that released the amino (N) terminus from the protein core and restructured an acceptor pocket for binding of the N terminus on the opposite subunit of the dimer. Substitution of residues critical for the switch between the monomeric and the dimeric states of the protein had profound effects on light adaptation in Neurospora. The mechanism of dimerization of VVD provides molecular details that explain how members of a large family of photoreceptors convert light responses to alterations in protein-protein interactions.
122.

Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes.

red violet Cyanobacteriochromes Phytochromes Background
Proc Natl Acad Sci USA, 28 Jun 2011 DOI: 10.1073/pnas.1107844108 Link to full text
Abstract: Phytochromes are well-known as photoactive red- and near IR-absorbing chromoproteins with cysteine-linked linear tetrapyrrole (bilin) prosthetic groups. Phytochrome photoswitching regulates adaptive responses to light in both photosynthetic and nonphotosynthetic organisms. Exclusively found in cyanobacteria, the related cyanobacteriochrome (CBCR) sensors extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. Blue/green light sensing by a well-studied subfamily of CBCRs proceeds via a photolabile thioether linkage to a second cysteine fully conserved in this subfamily. In the present study, we show that dual-cysteine photosensors have repeatedly evolved in cyanobacteria via insertion of a second cysteine at different positions within the bilin-binding GAF domain (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) shared by CBCRs and phytochromes. Such sensors exhibit a diverse range of photocycles, yet all share ground-state absorbance of near-UV to blue light and a common mechanism of light perception: reversible photoisomerization of the bilin 15,16 double bond. Using site-directed mutagenesis, chemical modification and spectroscopy to characterize novel dual-cysteine photosensors from the cyanobacterium Nostoc punctiforme ATCC 29133, we establish that this spectral diversity can be tuned by varying the light-dependent stability of the second thioether linkage. We also show that such behavior can be engineered into the conventional phytochrome Cph1 from Synechocystis sp. PCC6803. Dual-cysteine photosensors thus allow the phytochrome superfamily in cyanobacteria to sense the full solar spectrum at the earth surface from near infrared to near ultraviolet.
123.

Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803.

violet Cyanobacteriochromes Background
Proc Natl Acad Sci USA, 13 Jun 2011 DOI: 10.1073/pnas.1104242108 Link to full text
Abstract: Positive phototaxis systems have been well studied in bacteria; however, the photoreceptor(s) and their downstream signaling components that are responsible for negative phototaxis are poorly understood. Negative phototaxis sensory systems are important for cyanobacteria, oxygenic photosynthetic organisms that must contend with reactive oxygen species generated by an abundance of pigment photosensitizers. The unicellular cyanobacterium Synechocystis sp. PCC6803 exhibits type IV pilus-dependent negative phototaxis in response to unidirectional UV-A illumination. Using a reverse genetic approach, together with biochemical, molecular genetic, and RNA expression profiling analyses, we show that the cyanobacteriochrome locus (slr1212/uirS) of Synechocystis and two adjacent response regulator loci (slr1213/uirR and the PatA-type regulator slr1214/lsiR) encode a UV-A-activated signaling system that is required for negative phototaxis. We propose that UirS, which is membrane-associated via its ETR1 domain, functions as a UV-A photosensor directing expression of lsiR via release of bound UirR, which targets the lsiR promoter. Constitutive expression of LsiR induces negative phototaxis under conditions that normally promote positive phototaxis. Also induced by other stresses, LsiR thus integrates light inputs from multiple photosensors to determine the direction of movement.
124.

The cryptochromes: blue light photoreceptors in plants and animals.

blue Cryptochromes Review Background
Annu Rev Plant Biol, 1 Jun 2011 DOI: 10.1146/annurev-arplant-042110-103759 Link to full text
Abstract: Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.
125.

Computational evidence for the role of Arabidopsis thaliana UVR8 as UV-B photoreceptor and identification of its chromophore amino acids.

UV UV receptors Background
J Chem Inf Model, 24 May 2011 DOI: 10.1021/ci200017f Link to full text
Abstract: A homology model of the Arabidopsis thaliana UV resistance locus 8 (UVR8) protein is presented herein, showing a seven-bladed β-propeller conformation similar to the globular structure of RCC1. The UVR8 amino acid sequence contains a very high amount of conserved tryptophans, and the homology model shows that seven of these tryptophans cluster at the 'top surface' of the UVR8 protein where they are intermixed with positive residues (mainly arginines) and a couple of tyrosines. Quantum chemical calculations of excitation spectra of both a large cluster model involving all twelve above-mentioned residues and smaller fragments thereof reveal that absorption maxima appearing in the 280-300 nm range for the full cluster result from interactions between the central tryptophans and surrounding arginines. This observation coincides with the published experimentally measured action spectrum for the UVR8-dependent UV-B stimulation of HY5 transcription in mature A. thaliana leaf tissue. In total these findings suggest that UVR8 has in fact in itself the ability to be an ultraviolet-B photoreceptor in plants.
Submit a new publication to our database